Molecular mechanism of MPN development by mutant calreticulin

Norio Komatsu
Juntendo University Graduate School of Medicine
COI disclosure

Name of author: Norio Komatsu

I currently have, or I have had in the past two years, an affiliation or financial interest with business corporation(s):

(3) Others: No
WHO classification of MPN (2017)

Myeloproliferative neoplasms (MPN)
- Chronic myeloid leukemia (CML), BCR-ABL1+
- Chronic neutrophilic leukemia (CNL)
- Polycythemia vera (PV)
- Primary myelofibrosis (PMF)
 - prefibrotic/early stage
 - overt fibrotic stage
- Essential thrombocythemia (ET)
- Chronic eosinophilic leukemia, NOS
- MPN, unclassifiable

MPNs arise from the hematopoietic stem cell compartment

JAK2V617F, MPLW515x, CALR, BCR/ABL1
WHO classification of MPN (2017)

-Driver mutations in MPNs-

<table>
<thead>
<tr>
<th>MPNs</th>
<th>Driver mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic myelogenous leukemia</td>
<td>BCR-ABL1</td>
</tr>
<tr>
<td>Chronic neutrophilic leukemia</td>
<td>CSF3R mutations</td>
</tr>
<tr>
<td>Polycythemia vera</td>
<td>JAK2V617F • JAK2exon12</td>
</tr>
<tr>
<td>Essential thrombocythemia</td>
<td>JAK2V617F • *MPLW515K/L • CALRmut</td>
</tr>
<tr>
<td>Primary myelofibrosis (prefibrotic/overt)</td>
<td>JAK2V617F • *MPLW515K/L • CALRmut</td>
</tr>
<tr>
<td>Chronic eosinophilic leukemia, NOS</td>
<td>Unidentified</td>
</tr>
<tr>
<td>MPN, unclassifiable</td>
<td></td>
</tr>
</tbody>
</table>
Constitutive activation of cytokine receptors by mutant proteins in ET and PMF patients

Normal

- Normal cytokine receptors
- TPO
- MPL
- JAK2
- ERK1/2
- AKT
- STATs

ET and PMF

- JAK2 V617F (ca. 50%)
- MPL W515K/L (ca. 5%)
- CALRmut (ca. 25%)

Today’s talk

• What is calreticulin?

• How does mutant calreticulin contribute to MPN development?

• What is the molecular mechanism by which mutant calreticulin activates the thrombopoietin receptor MPL?
What is calreticulin (CALR)?
Calreticulin

1. was first identified as a **Ca\(^{2+}\)-binding protein** of the muscle sarcoplasmic reticulum in 1974

2. also known as calregulin, CRP55, CaBP3, calsequestrin-like protein, and endoplasmic reticulum resident protein 60 (ERp60)

3. is located in storage compartments associated with the **endoplasmic reticulum**

4. functions as a **molecular chaperone** to assist in the folding and subunit assembly of the majority of Asn-linked glycoproteins that pass through the endoplasmic reticulum

5. acts as an **important modulator of the regulation of gene transcription** by nuclear hormone receptors for glucocorticoid, androgen and retinoic acid

6. is engaged in **cellular invasion** and **metastasis** through the induction of cell migration
Structure and function of calreticulin (CALR)

CALR is a 417 amino acid, 46 kDa, **multi-functional protein** that primarily localizes within the lumen of the **endoplasmic reticulum**.
Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms

the unique features of CALR mutations

Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

Structure of calreticulin (CALR)

Endoplasmic reticulum (ER)-localized molecular chaperon.

Frameshift mutation is always +2 but not +1.

CALR mutations are gain of function mutations.
Mutant CALR gene is located in exon 9

ER-retention signal
mostly frequently observed forms

ET (n = 50)
PMF (n = 11)
How does mutant calreticulin contribute to MPN development?
Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms

Marito Araki,1,∞ Yinjie Yang,2,∞ Nami Masubuchi,2,3 Yumi Hironaka,2 Hiraku Takei,2 Soji Morishita,1 Yoshihisa Mizukami,2,4 Shin Kan,2,5 Shuichi Shirane,2 Yoko Edahiro,2 Yoshitaka Sunami,2 Akimichi Ohsaka,1 and Norio Komatsu2

Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis

Caroline Marty,1,3 Christian Pecquet,4,5 Harini Nivarthi,6 Mira El-Khoury,1,3 Ilyas Chachoua,4,5 Micheline Tulliez,1,3 Jean-Luc Villeval,1,3 Hana Raslova,1,3 Robert Kralovics,6 Stefan N. Constantinescu,4,5 Isabelle Plo,1,3,∞ and William Vainchenker1,3,∞

Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants

Ilyas Chachoua,1,2,∞ Christian Pecquet,1,2,∞ Mira El-Khoury,3,5,∞ Harini Nivarthi,6 Roxana-Irina Albu,1,2 Caroline Marty,3,5 Vitalina Gryshkova,1,2 Jean-Philippe Defour,1,2 Gaëlle Vertenoeil,1,2 Anna Ngo,7 Ann Koay,7 Hana Raslova,3,5 Pierre J. Courtoty,2 Meng Ling Choong,7 Isabelle Plo,3,5 William Vainchenker,3,5 Robert Kralovics,6 and Stefan N. Constantinescu1,2

UT-7 family

Komatsu N. Blood 87: 4552-4560, 1996
Komatsu N. Blood 89: 4021-4033, 1997
UT-7

established from the BM cells of a patient with M7 phenotypic characteristics of megakaryocytic lineage dependent on IL-3/GM-CSF/EPO for growth and survival

Ideal model for analysis of cytokine signal transduction

bone marrow UT-7

UT-7 family

IL-3
GM-CSF
EPO

UT-7

GM-CSF

UT-7/GM

UT-7/EPO

EPO

Erythroid cells

GM-CSF

UT-7/TPO

TPO

Megakaryocytes

Komatsu N. Blood 87: 4552-4560, 1996
Komatsu N. Blood 89: 4021-4033, 1997
Functional TPO receptors are expressed in UT-7/TPO but **NOT** in UT-7/EPO cells.

Komatsu N. Blood 82: 456-64, 1993
Komatsu N. Blood 87: 4552-60, 1996
Komatsu N. Blood 89: 4021-33, 1997
CALR mutants induce autonomous growth of UT-7/TPO cells but **NOT** of UT-7/EPO cells

UT-7/TPO

- **TPO-free**
 - vector
 - CALR WT
 - CALR Del52
 - CALR Ins5

UT-7/EPO

- **EPO-free**
 - vector
 - CALR WT
 - CALR Del52
 - CALR Ins5

retrovirus vector system

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
MPL is required for the mutant CALR-dependent cell growth in UT-7/TPO cells

UT-7/TPO/CALR Del52 shRNA virus infection

0hr 24 48 72
Viability RNA Viability

MPL mRNA

MPL/GAPDH mRNA

Cell viability

Viability (%)

0 20 40 60 80 100

24hr 72hr

Non-target sh1 sh2 sh3

Non-target sh1 sh2 sh3

lentiviral vectors Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
Mutant CALR protein binds to MPL

Do c-MPL and mutant CALR proteins physically interact?

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
Mutant CALR interacts with JAK2 via MPL

co-IP assay

Do JAK2 and mutant CALR proteins physically interact?

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
Mutant CALR activates the JAK2 pathway via MPL activation to drive oncogenic transformation

Robust phosphorylation of ERK1/2 and STAT5

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
Short summary

- Mutant CALR requires thrombopoietin receptor MPL for oncogenic transformation of hematopoietic cells.
- Mutant CALR interacts with JAK2 via MPL.
- Mutant CALR promotes cytokine-independent growth by activating the JAK2 pathway.
Which domain of mutant CALR binds to c-MPL?
Identification of MPL-binding domain of mutant CALR

co-IP assay

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
The mutant CALR-specific sequence is required for interaction with c-MPL

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
Identification of MPL binding domain in mutant CALR

Autonomous growth

- - + -

Binding activity of Ins5 to MPL

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
Identification of MPL binding domain in mutant CALR

N-domain of mutant CALR is the bona fide MPL binding domain.

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
What is the function of the mutant-specific C-terminal domain of mutant CALR?
Mutant-specific C terminal domain is required for mutant CALR to interact with MPL via the N-domain

When the P-domain is present and the mutant-specific C terminal domain is missing, all CALR mutants carrying the N-domain failed to interact with c-MPL

N-domain could bind to c-MPL in either the presence of the mutant specific C terminal domain or the absence of P-domain

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
A hypothetical model for mutant CALR-specific binding to MPL

P-domain functions as a blockade of binding of the N-domain to MPL in wild-type CALR, whereas this function of the P-domain is blocked by the mutant-specific C-terminal domain of mutant CALR.

Araki M, Yang Y and Komatsu N. Blood 2016: 127; 1307-16
What is the molecular mechanism by which mutant calreticulin activates thrombopoietin receptor MPL?
Mutant, but not wild type, CALR proteins may form homomultimeric complexes.

Fractionation by density gradient centrifugation

WT Del52 Ins5

UT-7/TPO

<table>
<thead>
<tr>
<th>Inpt</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
</tr>
<tr>
<td>Del52</td>
<td></td>
</tr>
<tr>
<td>Ins5</td>
<td></td>
</tr>
</tbody>
</table>

Intermolecular interactions occur among mutant CALR proteins

A co-IP assay on the extracts from HEK293T cells harboring Del52, Ins5, or wild type CALR, with either a V5 or a FLAG epitope tag.
Does the mutant specific C terminal domain mediate intermolecular interaction between mutant CALR?
Mutant-specific C terminal domain mediates intermolecular interaction between mutant CALR

Flag-tagged CALR Ins5ΔN/P (prey) interacts with V5-tagged CALR Ins5ΔN/P (bait) in vitro. *IgG light chain

Mutant-specific C terminal domain is required for the intermolecular interaction between mutant CALR proteins.

A series of truncated FLAG-tagged Ins5

WT

Flag-tagged CALR (prey)

V5-tagged CALR Ins5ΔN/P (bait)

Mutant-specific C terminal domain is required for intermolecular interaction between mutant CALR

CALR WT

CALRmut

CALRmut
Is mutant CALR multimerization essential for MPL activation?”
Scheme of competition assay

Competitor
(Lacking an MPL-binding domain)

intermolecular interactions within CALR molecules

Homomultimerization of mutant CALR is required for the MPL binding and activation

MPL-binding assay

STAT5 reporter assay

A new model for the constitutive activation of cytokine receptor signaling by a mutant chaperone

The mutant CALR serves as a fake ligand of MPL by forming a homo-multimeric complex and constitutively activates MPL and its downstream signaling molecules, leading to MPN development.

Acknowledgements

Juntendo University Graduate School of Medicine
Department of Hematology
Yinjie Yang
Nami Masubuchi
Yumi Hironaka
Hiraku Takei
Yoshihisa Mizukami
Hajime Yasuda

Department of Stem Cell and Transfusion
Marito Araki
Soji Morishita
Akimichi Ohsaka

Leading Center for the Development and Research of Cancer Medicine
Misa Imai
Thank you for your attention

Norio